LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis
نویسندگان
چکیده
Background Long noncoding RNAs (lncRNAs) have been revealed to play essential role in drug resistance of multiple cancers. LncRNA MEG3 was previously reported to be associated with cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC) cells. However, the molecular mechanism of MEG3 affecting DDP resistance in NSCLC remains to be further illustrated. In this study, we attempted to discuss whether MEG3 also could function as a competing endogenous RNA to regulate DDP resistance in NSCLC. Materials and methods The expression of MEG3, miR-21-5p, and sex-determining region Y-box 7 (SOX7) in NSCLC tissues or cells was examined by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and caspase-3 activity analysis were applied to assess the DDP sensitivity of NSCLC cells. The interaction between MEG3, miR-21-5p, and SOX7 was explored by luciferase reporter assay, RNA immunoprecipitation (RIP) assay, qRT-PCR, and Western blot. Mouse NSCLC transplanted tumor was established to verify the functional role of MEG3 in DDP resistance in vivo. Results MEG3 was downregulated in DDP-resistant NSCLC cells. Overexpression of MEG3 enhanced DDP sensitivity of NSCLC cells in vitro. MEG3 directly interacted with miR-21-5p and suppressed its expression. miR-21-5p significantly abolished the effects of MEG3 on DDP resistance via modulating cell proliferation and apoptosis. SOX7 was identified as a direct target of miR-21-5p and MEG3 positively regulated SOX7 expression by suppressing miR-21-5p. Moreover, MEG3 knockdown-induced pro-proliferative and anti-apoptotic effects were reversed in DDP-resistant NSCLC cells by upregulating SOX7. Furthermore, upregulation of MEG3 induced sensitivity of NSCLC cells to DDP in vivo. Conclusion MEG3 overexpression induced DDP sensitivity of NSCLC cells by regulating miR-21-5p/SOX7 axis, shedding light on the molecular mechanism of MEG3 involved in the development of DDP resistance of NSCLC cells.
منابع مشابه
NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells
Platinum-based drugs are the firstline of treatment for non-small cell lung cancer (NSCLC), but resistance to these drugs is a major obstacle to effective chemotherapy. Our previous study revealed that the green tea polyphenol, EGCG, induced cisplatin transporter CTR1 (copper transporter 1) and enhanced cisplatin sensitivity in ovarian cancer. In this study, we found that EGCG upregulated CTR1 ...
متن کاملDownregulation of lncRNA MEG3 and miR-770-5p inhibit cell migration and proliferation in Hirschsprung’s disease
The long noncoding RNA (lncRNA) MEG3 is involved in various biological processes including cell migration and cell proliferation. In present study, it was found that MEG3 and the intronic miR-770-5p were decreased in samples from HSCR patients. Besides, knockdown of MEG3 and miR-770-5p suppressed cell migration and proliferation, while cell cycle and apoptosis were not affected in human 293T an...
متن کاملDownregulation of Meg3 enhances cisplatin resistance of lung cancer cells through activation of the WNT/β-catenin signaling pathway.
Maternally expressed gene 3 (Meg3) has been shown to promote tumor progression. However, the role of Meg3 in the development of a chemoresistant phenotype of human lung cancer has remains. Reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the expression of Meg3. Flow cytometric analysis and MTT assay were also used to investigate the cell cycle and apop...
متن کاملMALAT1/miR-101-3p/MCL1 axis mediates cisplatin resistance in lung cancer
In this study, we investigated the mechanism by which lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) mediates cisplatin resistance in lung cancer. Lung cancer patients with high MALAT1 levels were associated with cisplatin resistance and low overall survival. Moreover, cisplatin-resistant A549/DDP cells showed higher MALAT1 expression than cisplatin-sensitive lung cancer...
متن کاملKnockdown of lncRNA-XIST enhances the chemosensitivity of NSCLC cells via suppression of autophagy
Drug resistance is the major factor contributing to the failure of chemotherapy in non-small cell lung cancer (NSCLC) patients. Emerging evidence suggests that autophagy plays a vital role in the chemoresistance of many types of tumors. However, the exact mechanism underlying the chemoresistance of NSCLC is still elusive, and it is unclear whether lncRNA-XIST is involved in autophagy and chemor...
متن کامل